Xin chúc mừng!!! Bạn đã giành được một giải thưởng tiền mặt! Bạn có hai tùy chọn thanh toán: A: Nhận 10.000 đô la ngay bây giờ hoặc B: Nhận 10.000 đô la trong ba năm. Bạn sẽ chọn phương án nào?
Giá trị thời gian của tiền là gì?
Nếu bạn giống như hầu hết mọi người, bạn sẽ chọn nhận 10.000 đô la ngay bây giờ. Rốt cuộc, ba năm là một thời gian dài để chờ đợi. Tại sao bất kỳ người hợp lý nào lại trì hoãn thanh toán vào tương lai khi người đó có thể có cùng số tiền bây giờ? Đối với hầu hết chúng ta, lấy tiền trong hiện tại chỉ là bản năng đơn giản. Vì vậy, ở cấp độ cơ bản nhất, giá trị thời gian của tiền chứng tỏ rằng tất cả mọi thứ đều bình đẳng, có vẻ tốt hơn là có tiền ngay bây giờ hơn là sau này.
Nhưng tại sao lại thế này? Hóa đơn 100 đô la có giá trị tương đương với hóa đơn 100 đô la một năm kể từ bây giờ, phải không? Trên thực tế, mặc dù hóa đơn là như nhau, bạn có thể làm nhiều hơn với số tiền nếu bạn có nó ngay bây giờ vì theo thời gian bạn có thể kiếm được nhiều tiền lãi hơn từ tiền của mình.
Quay lại ví dụ của chúng tôi: Bằng cách nhận 10.000 đô la ngày hôm nay, bạn đã sẵn sàng tăng giá trị tương lai của số tiền của mình bằng cách đầu tư và thu lãi trong một khoảng thời gian. Đối với Tùy chọn B, bạn không có thời gian về phía mình và khoản thanh toán nhận được trong ba năm sẽ là giá trị tương lai của bạn. Để minh họa, chúng tôi đã cung cấp một dòng thời gian:
Khái niệm cơ bản về giá trị trong tương lai
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác $ 10.000 × 0, 045 = $ 450
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác $ 450 + $ 10.000 = $ 10, 450
Bạn cũng có thể tính tổng số tiền đầu tư một năm với thao tác đơn giản của phương trình trên:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác OE = ($ 10.000 × 0, 045) + $ 10.000 = $ 10, 450 ở mọi nơi: OE = Phương trình ban đầu
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác Thao tác = $ 10.000 × = $ 10, 450
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác Phương trình cuối cùng = $ 10.000 × (0, 045 + 1) = $ 10, 450
Phương trình thao tác ở trên chỉ đơn giản là loại bỏ biến tương tự $ 10.000 (số tiền gốc) bằng cách chia toàn bộ phương trình ban đầu cho $ 10.000.
Nếu 10, 450 đô la còn lại trong tài khoản đầu tư của bạn vào cuối năm đầu tiên không bị ảnh hưởng và bạn đã đầu tư ở mức 4, 5% cho một năm khác, bạn sẽ có bao nhiêu? Để tính toán điều này, bạn sẽ lấy $ 10, 450 và nhân nó lại với 1, 045 (0, 045 +1). Vào cuối hai năm, bạn sẽ có $ 10, 920, 25.
Tính giá trị tương lai
Tính toán trên, tương đương với phương trình sau:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác Giá trị tương lai = $ 10.000 × (1 + 0, 045) × (1 + 0, 045)
Nghĩ lại về lớp toán và quy tắc của số mũ, trong đó nói rằng phép nhân của các số hạng tương đương với việc thêm số mũ của chúng. Trong phương trình trên, hai số hạng giống như là (1+ 0, 045) và số mũ trên mỗi số bằng 1. Do đó, phương trình có thể được biểu diễn như sau:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác Giá trị tương lai = $ 10.000 × (1 + 0, 045) 2
Chúng ta có thể thấy rằng số mũ bằng với số năm mà tiền kiếm được tiền lãi trong một khoản đầu tư. Vì vậy, phương trình tính giá trị tương lai ba năm của khoản đầu tư sẽ như thế này:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác Giá trị tương lai = $ 10.000 × (1 + 0, 045) 3
Tuy nhiên, chúng ta không cần phải tiếp tục tính toán giá trị tương lai sau năm đầu tiên, rồi năm thứ hai, rồi năm thứ ba, v.v. Bạn có thể hình dung tất cả cùng một lúc, có thể nói như vậy. Nếu bạn biết số tiền hiện tại bạn có trong một khoản đầu tư, tỷ lệ hoàn vốn của nó và số năm bạn muốn giữ khoản đầu tư đó, bạn có thể tính giá trị tương lai (FV) của số tiền đó. Nó được thực hiện với phương trình:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác FV = PV × (1 + i) ở mọi nơi: FV = Giá trị tương laiPV = Giá trị hiện tại (số tiền gốc) i = Lãi suất mỗi kỳ = Số kỳ
Khái niệm cơ bản về giá trị hiện tại
Để tìm giá trị hiện tại của 10.000 đô la bạn sẽ nhận được trong tương lai, bạn cần giả vờ rằng 10.000 đô la là tổng giá trị tương lai của số tiền bạn đã đầu tư hôm nay. Nói cách khác, để tìm giá trị hiện tại của 10.000 đô la trong tương lai, chúng tôi cần tìm hiểu xem chúng tôi sẽ phải đầu tư bao nhiêu ngày hôm nay để nhận được 10.000 đô la đó trong một năm.
Để tính giá trị hiện tại hoặc số tiền mà chúng tôi sẽ phải đầu tư hôm nay, bạn phải trừ đi số tiền lãi tích lũy (giả thuyết) từ 10.000 đô la. Để đạt được điều này, chúng tôi có thể chiết khấu số tiền thanh toán trong tương lai (10.000 đô la) theo lãi suất trong kỳ. Về bản chất, tất cả những gì bạn đang làm là sắp xếp lại phương trình giá trị tương lai ở trên để bạn có thể giải quyết giá trị hiện tại (PV). Phương trình giá trị tương lai ở trên có thể được viết lại như sau:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác PV = (1 + i) nFV
Một phương trình thay thế sẽ là:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác PV = FV × (1 + i) ở mọi nơi: PV = Giá trị hiện tại (số tiền gốc) FV = Giá trị tương lai = Lãi suất mỗi kỳ = Số kỳ
Tính giá trị hiện tại
Hãy đi ngược lại từ 10.000 đô la được cung cấp trong Tùy chọn B. Hãy nhớ rằng, 10.000 đô la nhận được trong ba năm thực sự giống như giá trị tương lai của khoản đầu tư. Nếu chúng tôi có một năm để đi trước khi nhận được tiền, chúng tôi sẽ chiết khấu thanh toán lại một năm. Sử dụng công thức giá trị hiện tại của chúng tôi (phiên bản 2), ở mốc hai năm hiện tại, giá trị hiện tại của 10.000 đô la nhận được trong một năm sẽ là 10.000 đô la x (1 +.045) -1 = 9569, 38 đô la.
Lưu ý rằng nếu hôm nay chúng tôi ở mức một năm, 9.569, 38 đô la ở trên sẽ được coi là giá trị tương lai của khoản đầu tư của chúng tôi một năm kể từ bây giờ.
Tiếp tục, vào cuối năm đầu tiên, chúng tôi sẽ mong đợi nhận được khoản thanh toán 10.000 đô la trong hai năm. Với lãi suất 4, 5%, tính toán cho giá trị hiện tại của khoản thanh toán 10.000 đô la dự kiến trong hai năm sẽ là 10.000 đô la x (1 +.045) -2 = 9157, 30.
Tất nhiên, vì quy tắc của số mũ, chúng tôi không phải tính giá trị tương lai của khoản đầu tư hàng năm, tính lại từ khoản đầu tư 10.000 đô la trong năm thứ ba. Chúng ta có thể đặt phương trình chính xác hơn và sử dụng 10.000 đô la làm FV. Vì vậy, đây là cách bạn có thể tính giá trị hiện tại của 10.000 đô la dự kiến từ khoản đầu tư ba năm kiếm 4, 5%:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác $ 8, 762, 97 = $ 10.000 × (1 +.045) −3
Vì vậy, giá trị hiện tại của khoản thanh toán 10.000 đô la trong tương lai trị giá $ 8, 762, 97 ngay hôm nay nếu lãi suất là 4, 5% mỗi năm. Nói cách khác, chọn Tùy chọn B giống như lấy $ 8, 762.97 bây giờ và sau đó đầu tư nó trong ba năm. Các phương trình trên minh họa rằng Lựa chọn A tốt hơn không chỉ bởi vì nó cung cấp cho bạn tiền ngay bây giờ mà bởi vì nó cung cấp cho bạn thêm $ 1, 237, 03 ($ 10.000 - $ 8, 762.97) bằng tiền mặt! Hơn nữa, nếu bạn đầu tư 10.000 đô la mà bạn nhận được từ Tùy chọn A, lựa chọn của bạn mang lại cho bạn một giá trị tương lai là $ 1, 411.66 (11, 411, 66 - 10.000 đô la) lớn hơn giá trị tương lai của Tùy chọn B.
Giá trị hiện tại của khoản thanh toán trong tương lai
Hãy ủng hộ đề nghị của chúng tôi. Điều gì xảy ra nếu khoản thanh toán trong tương lai nhiều hơn số tiền bạn nhận được ngay lập tức? Giả sử bạn có thể nhận được 15.000 đô la ngày hôm nay hoặc 18.000 đô la trong bốn năm. Quyết định bây giờ khó khăn hơn. Nếu bạn chọn nhận 15.000 đô la ngay hôm nay và đầu tư toàn bộ số tiền, bạn thực sự có thể kết thúc với một lượng tiền mặt trong bốn năm ít hơn 18.000 đô la.
Làm thế nào để quyết định? Bạn có thể tìm thấy giá trị tương lai của 15.000 đô la, nhưng vì chúng ta luôn sống ở hiện tại, chúng ta hãy tìm giá trị hiện tại là 18.000 đô la. Lần này, chúng tôi sẽ giả định lãi suất hiện là 4%. Hãy nhớ rằng phương trình cho giá trị hiện tại là như sau:
Hay nói, là một tài tài của, qua, qua, qua một tài khác, qua giữ, qua một tài khác PV = FV × (1 + i) n
Trong phương trình trên, tất cả những gì chúng tôi đang làm là chiết khấu giá trị tương lai của khoản đầu tư. Sử dụng các con số ở trên, giá trị hiện tại của khoản thanh toán $ 18.000 trong bốn năm sẽ được tính là $ 18.000 x (1 + 0, 04) -4 = $ 15.386, 48.
Từ tính toán trên, bây giờ chúng tôi biết sự lựa chọn của chúng tôi ngày hôm nay là giữa việc chọn $ 15, 000 hoặc $ 15, 386, 48. Tất nhiên, chúng ta nên chọn hoãn thanh toán trong bốn năm!
Điểm mấu chốt
Những tính toán này chứng minh rằng thời gian theo nghĩa đen là tiền, giá trị của số tiền bạn có hiện tại không giống như trong tương lai và ngược lại. Vì vậy, điều quan trọng là phải biết cách tính giá trị thời gian của tiền để bạn có thể phân biệt giữa giá trị của các khoản đầu tư mang lại cho bạn lợi nhuận vào các thời điểm khác nhau. (Để đọc liên quan, xem "Giá trị thời gian của tiền và đô la")
